
1

Robotics for Semiconductor Manufacturing: 
Past, Present, Future

Presented at the 
Asilomar Microcomputer Workshop

29 April 2010

by

Dr. Karl Mathia
kmathia (at) zitechengineering (dot) com



2Karl Mathia; Email: kmathia@zitechengineering.com, URL: www.zitechengineering.com

Book

With excerpts from my book

Robotics for Electronics Manufacturing –
Principles and Applications in Cleanroom 
Automation

by Karl Mathia (2010). 
Cambridge University Press
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Agenda

 How clean are we?
 Trends in Industrial Robotics
 Semiconductor Automation: Past and Present
 Cleanroom Robotics
 Design of Atmospheric Robots
 Design Vacuum Robots

 Robot Quality Control
 Trends and Possibilities
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How clean are we?

 We are not clean enough for modern 
semiconductor manufacturing

 Human contamination at different levels of 
motion (*measured particles were 0.3 µm and 
larger).

 Automation, incl. cleanroom robots, is critical.

Human 
Motion 

Heat 
emission 
(kW) 

Moisture 
emission 
(gram/hour) 

Particle 
emission* 
(particles/min)

Breathing 
requirements 
(m3/hour) 

At Rest 0.12 90 100,000 0.50 
Light Work 0.18 180 1,000,000 1.00 
4.8 km/h 0.3 320 5,000,000 2.15 
6.4 km/h 0.4 430 10,000,000 2.55
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How clean are we?

 International Technology Roadmap for Semiconductors
 2010: CD=45 nm, critical particle size=23 nm
 Class 1: contamination limit=100/m3
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Trends in Industrial Robotics

Shipments of industrial robots by application
Source: World Robotics 2008 (IFR, 2008)
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Trends in Industrial Robotics

Operational stock of industrial robots (*estimate). 
Source: World Robotics 2008, IFR, 2008
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Trends in Industrial Robotics

Price index for industrial robots 1990-2005
Source: World Robotics 2005 (IFR, 2006)
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Tool Automation (Robotics)

Interbay (AMHS)
Intrabay (Reticle Handling)

Fab Mgmt (Software)
Services (Operators)

Semiconductor Automation
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Atmospheric Robots

 Substrate handling at 
ambient atmospheric 
pressure in tools

 3 to 5 axes of motion
 SCARA-type arm is the 

most common kinematics
 Handle a variety of 

substrates (150–300 mm 
wafer, reticles)
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Atmospheric Robots

Design for cleanliness and product safety:
 Clean materials
 Preventing electrostatic charges 
 Clean drive trains
 Surface finishes
 End-effectors
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Atmospheric Robots

Clean materials:  
Minimize particle contamination from 

contact, friction, out-gassing
 Stainless steel: excellent, expensive
 Aluminum: cheap, popular
 Plastics: small parts, harsh environm.
 Ceramics: excellent, very expensive
 Composites: instead of metal, ceramics
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Atmospheric Robots

Clean materials: wear resistance 
comparison for selected materials

PEEK (polyetheretherketone): thermoplastic
Vespel® (polyimide): plastic
PFA (perfluoroalkoxy): plastic

Material Wear rate 
(  -1μm hour ) 

Dynamic 
friction coeff. 
(m·s-1) 

Plastics (not reinforced)   
  PEEK, pure 17.75 0.42 
Composites:   
  PEEK, carbon-fiber reinforced 2.16 0.29 
  PEEK, glass-fiber reinforced 2.36 0.26 
  Vespel CR-61001 0.69 0.20 
  PFA, carbon-fiber reinforced 1.19 0.18 
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Atmospheric Robots

Preventing electrostatic discharges (ESD):  
Risk is ESD-event between sensitive 

devices and a robot end-effector
 Product damage
 Robot malfunction or failure
 Electromagnetic interference, impact 

on sensors and communications
Prevention: grounding, conductive surface
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Atmospheric Robots

Electrostatic field limits per technology 
node (ITRS)
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Atmospheric Robots

Clean drive trains:  
 All parts below substrate/wafer
 Evacuate generate particles
 Minimize number of moving parts
 Motor selection (brushless or direct 

drives…)
 Careful selection of belts and pulleys
 Maintainability of drive train (access,…)
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Atmospheric Robots

Evacuating airborne particles  

Fan

Motors

Belts

Air flow

Evacuated particles
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Atmospheric Robots

End-effectors: edge-gripper, minimal 
contact
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Vacuum Robots

 Substrate handling in vacuum
 ≤10-8 Torr pressure
 Dynamic vacuum barrier (seal) 

transfers motion into vacuum
 Suitable materials (outgassing)

 Low profile:
 Small chamber (pump-down time)
 SEMI standard compatibility

 Suitable controls:
 Prevent wafer slippage without 

vacuum gripping, smooth 
trajectories
 Provide required wafer throughput
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Vacuum Robots

Vacuum robot inside vacuum cluster tool
 

Vacuum 

Load lock 

Ambient 
atmosphere 

Vacuum chamber 

Static vacuum barrier 
(gasket, O-ring, etc.) 

Area where dynamic 
vacuum barrier is located 

Chuck 
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Vacuum Robots

Design for cleanliness and product safety
Vacuum integrity:
 Static vacuum barrier
 Dynamic vacuum barrier
 Magnetic feedthrough
 Metal bellow
 Magnetic coupling
 Motors with integrated vacuum barrier
 Lip seal
 Harmonic drive
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Vacuum Robots

Estimated vacuum level and market share 
of manufacturing processes 

Process Estimated 
Market share

Typical Vacuum 
Level 

Etch 28% medium 
Chemical vapor deposition 30% medium to low 
Molecular beam epitaxy 3% ultra-high 
E-beam ultra-high to high 
Sputtering ultra-high 
Physical vapor deposition 

11%
high 

Atomic layer deposition 1% medium 
Ion implant 11% High 
Inspection and metrology 9% High 
Ashing 3% high to low 
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Vacuum Robots

Robot assembly and handling:
 Gloves, hairnets, gowns, shoe covers
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Trends and Possibilities

Future possibilities: 450 mm wafers
 Will 450 mm happen? (So far Intel, TSMC, and 

Samsung support it.)
 Risk: who will pay for the wafer size transition? 

(300 mm is not paid for yet [SEMI])
Consequence for robotics:  technical challenge is 

moderate. Scale up the robots and increase 
their reliability.
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Trends and Possibilities

Wafer size transitions
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Trends and Possibilities

Future possibilities: 3-dimensional devices
 Are 3D devices a possibility, with an increased 

number of metal layers and denser 300 mm 
circuitry?

 Risk: more process steps, increased processing 
time, therefore a higher risk of reduced yield.

 Cost per wafer would increase (cost per process 
step is assumed constant)

Consequence for robotics: same form factors, but 
higher speed, tighter cleanliness requirements
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Trends and Possibilities

Future possibilities: new materials
 Non-Silicon materials (GaAs,…) are fragile
 Small wafers (e.g. GaAs): LED mfg is typical, 

may become high-volume niche with larger 
substrates

 Glass substrates?
 Cross contamination (example: copper)
Consequence for robotics: same form factor, but 

increased reliability
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Trends and Possibilities

Conclusion: no significant hardware challenges
Instead, software challenges:
 Smart/intelligent features:  algorithms, software
 Increase autonomy, reduce human labor
 Examples: plug’n’play system startup, automatic 

calibration, remote diagnostics, parameter 
monitoring and failure prediction, unscheduled 
(not scheduled) maintenance

Consequence for robotics: similar hardware, but 
smarter software
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Q & A


