Robotics for Semiconductor Manufacturing: Past, Present, Future

Presented at the Asilomar Microcomputer Workshop 29 April 2010

by

Dr. Karl Mathia kmathia (at) zitechengineering (dot) com

Book

With excerpts from my book

Robotics for Electronics Manufacturing – Principles and Applications in Cleanroom Automation

by Karl Mathia (2010). Cambridge University Press

Agenda

- How clean are we?
- Trends in Industrial Robotics
- Semiconductor Automation: Past and Present
- Cleanroom Robotics
 - Design of Atmospheric Robots
 - Design Vacuum Robots
- Robot Quality Control
- Trends and Possibilities

- We are not clean enough for modern semiconductor manufacturing
- Human contamination at different levels of motion (*measured particles were 0.3 µm and larger).

Human Motion	Heat emission (kW)	Moisture emission (gram/hour)	Particle emission* (particles/min)	Breathing requirements (m ³ /hour)
At Rest	0.12	90	100,000	0.50
Light Work	0.18	180	1,000,000	1.00
4.8 km/h	0.3	320	5,000,000	2.15
6.4 km/h	0.4	430	10,000,000	2.55

Automation, incl. cleanroom robots, is critical.

How clean are we?

- International Technology Roadmap for Semiconductors
- 2010: CD=45 nm, critical particle size=23 nm
- Class 1: contamination limit=100/m³

Karl Mathia; Email: kmathia@zitechengineering.com, URL: www.zitechengineering.com

Shipments of industrial robots by application Source: World Robotics 2008 (IFR, 2008)

Operational stock of industrial robots (*estimate). Source: World Robotics 2008, IFR, 2008

Karl Mathia; Email: kmathia@zitechengineering.com, URL: www.zitechengineering.com

Price index for industrial robots 1990-2005 Source: World Robotics 2005 (IFR, 2006)

Semiconductor Automation

Atmospheric Robots

- Substrate handling at ambient atmospheric pressure in tools
- 3 to 5 axes of motion
- SCARA-type arm is the most common kinematics
- Handle a variety of substrates (150–300 mm wafer, reticles)

Design for cleanliness and product safety:

- Clean materials
- Preventing electrostatic charges
- Clean drive trains
- Surface finishes
- End-effectors

Clean materials:

Minimize particle contamination from contact, friction, out-gassing

- Stainless steel: excellent, expensive
- Aluminum: cheap, popular
- Plastics: small parts, harsh environm.
- Ceramics: excellent, very expensive
- Composites: instead of metal, ceramics

<u>Clean materials</u>: wear resistance comparison for selected materials

Material	Wear rate	Dynamic
	(µm ∙hour ⁻¹)	friction coeff. (m·s ⁻¹)
Plastics (not reinforced)		
PEEK, pure	17.75	0.42
Composites:		
PEEK, carbon-fiber reinforced	2.16	0.29
PEEK, glass-fiber reinforced	2.36	0.26
Vespel CR-6100 ¹	0.69	0.20
PFA, carbon-fiber reinforced	1.19	0.18

PEEK (polyetheretherketone): thermoplastic Vespel® (polyimide): plastic PFA (perfluoroalkoxy): plastic

Preventing electrostatic discharges (ESD):

Risk is ESD-event between sensitive devices and a robot end-effector

- Product damage
- Robot malfunction or failure
- Electromagnetic interference, impact on sensors and communications

Prevention: grounding, conductive surface

Electrostatic field limits per technology node (ITRS)

<u>Clean drive trains</u>:

- All parts below substrate/wafer
- Evacuate generate particles
- Minimize number of moving parts
- Motor selection (brushless or direct drives...)
- Careful selection of belts and pulleys
- Maintainability of drive train (access,...)

Evacuating airborne particles

End-effectors: edge-gripper, minimal contact

Vacuum Robots

- Substrate handling in vacuum
 - ≤10⁻⁸ Torr pressure
 - Dynamic vacuum barrier (seal) transfers motion into vacuum
 - Suitable materials (outgassing)
- Low profile:
 - Small chamber (pump-down time)
 - SEMI standard compatibility
- Suitable controls:
 - Prevent wafer slippage without vacuum gripping, smooth trajectories
 - Provide required wafer throughput

Vacuum Robots

Vacuum robot inside vacuum cluster tool

Design for cleanliness and product safety

Vacuum integrity:

- Static vacuum barrier
- Dynamic vacuum barrier
 - Magnetic feedthrough
 - Metal bellow
 - Magnetic coupling
 - Motors with integrated vacuum barrier
 - Lip seal
 - Harmonic drive

Estimated vacuum level and market share of manufacturing processes

Process	Estimated Market share	Typical Vacuum Level
Etch	28%	medium
Chemical vapor deposition	30%	medium to low
Molecular beam epitaxy	3%	ultra-high
E-beam		ultra-high to high
Sputtering	11%	ultra-high
Physical vapor deposition		high
Atomic layer deposition	1%	medium
lon implant	11%	High
Inspection and metrology	9%	High
Ashing	3%	high to low

Robot assembly and handling:

Gloves, hairnets, gowns, shoe covers

Karl Mathia; Email: kmathia@zitechengineering.com, URL: www.zitechengineering.com

Future possibilities: 450 mm wafers

- Will 450 mm happen? (So far Intel, TSMC, and Samsung support it.)
- Risk: who will pay for the wafer size transition? (300 mm is not paid for yet [SEMI])
- Consequence for robotics: technical challenge is moderate. Scale up the robots and increase their reliability.

Trends and Possibilities

Wafer size transitions

Future possibilities: 3-dimensional devices

- Are 3D devices a possibility, with an increased number of metal layers and denser 300 mm circuitry?
- Risk: more process steps, increased processing time, therefore a higher risk of reduced yield.
- Cost per wafer would increase (cost per process step is assumed constant)
- Consequence for robotics: same form factors, but higher speed, tighter cleanliness requirements

Future possibilities: new materials

- Non-Silicon materials (GaAs,...) are fragile
- Small wafers (e.g. GaAs): LED mfg is typical, may become high-volume niche with larger substrates
- Glass substrates?
- Cross contamination (example: copper)
- Consequence for robotics: same form factor, but increased reliability

Conclusion: no significant hardware challenges Instead, software challenges:

- Smart/intelligent features: algorithms, software
- Increase autonomy, reduce human labor
- Examples: plug'n'play system startup, automatic calibration, remote diagnostics, parameter monitoring and failure prediction, unscheduled (not scheduled) maintenance
- Consequence for robotics: similar hardware, but smarter software

Q & A

Karl Mathia; Email: kmathia@zitechengineering.com, URL: www.zitechengineering.com